skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dick, Jeffrey_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The commercialization of zinc metal batteries (ZMBs) for large‐scale energy storage is hindered by challenges such as dendrite formation, the hydrogen evolution reaction (HER), and passivation/corrosion, which lead to poor stability of zinc metal anodes. HER is a primary contributor to this instability, and despite efforts to enhance ZMB cyclability, a significant knowledge gap remains regarding the origin of HER in these systems. Prior works, based primarily on theoretical calculations with minimal experimental support, suggest that HER originates from Zn2⁺‐solvated water. For the first time, by employing scanning electrochemical microscopy (SECM), and electrochemical mass spectrometry (ECMS), in real‐time the inherently intertwined nature of Zn electrodeposition and H₂ liberation is revealed, both exhibiting the same onset potential in voltammetry. The findings show that water molecules surrounding Zn2⁺ ions undergo reduction simultaneously during Zn2⁺ deposition. Additionally, ECMS conducted under chronopotentiometric/galvanostatic conditions at battery‐relevant current densities elucidates why elevated electrolyte concentrations enhance the prolonged cyclability of ZMBs. Understanding the origin of HER opens avenues for developing high‐performance, reliable aqueous ZMBs, addressing key challenges in their commercialization and advancing their technological capabilities. 
    more » « less
  2. Abstract Aqueous zinc metal batteries (AZMB) are emerging as a promising alternative to the prevailing existing Lithium‐ion battery technology. However, the development of AZMBs is hindered due to challenges including dendrite formation, hydrogen evolution reaction (HER), and ZnO passivation on the anode. Here, a tetraalkylsulfonamide (TAS) additive for suppressing HER, dendrite formation, and enhancing cyclability is rationally designed. Only 1 mmTAS is found that can effectively displace water molecules from the Zn2+solvation shell, thereby altering the solvation matrix of Zn2+and disrupting the hydrogen bond network of free water, as demonstrated through67 Zn and1H nuclear magnetic resonance spectroscopy, high‐resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. Voltammetry synchronized with in situ monitoring of the electrode surface reveals suppressed dendritic growth and HER in the presence of TAS. Electrochemical mass spectrometry (ECMS) captures real‐time HER suppression during Zn electrodeposition, revealing the ability of TAS to suppress the HER by an order of magnitude. A ≈25‐fold cycle life improvement from ≈100 h to over 2500 h in coin cells cycled in the presence of TAS. Furthermore, by suppressing passivation product formation, it is demonstrated that strategy robustly maximizes the stability of Zn metal anodes. 
    more » « less